Insights on the statistical variability of experimental fire behavior data using airborne-infrared

Douglas J. McRae, Susan G. Conard, Ji-zhong Jin, Anatoly I. Sukhinin, Tom W. Blake, and Galina A. Ivanova

Wildland Fire Canada 2010, 6 October 2010, Kitchener, ON.

The problem

TABLE 4. Fire impact on forest fuels and fire behavior characteristics of the SharpsandCreek experimental fires in immature jack pine.

	Fuel consumed (kg/m ²)					Rate	Frontal
Fire No.	Total surface	Ground fuels	Crown fuels	Total fuel	Depth of burn (cm)	of spread (m/min)	fire intensity (kW/m)
2	0.22	0.44	0.89	1.55	2.01	10.74	4717
5	0.39	0.94	1.27	2.60	3.74	14.64	10785
7	0.53	0.42	0.00	0.95	1.91	2.10	599
11b	0.55	0.97	1.40	2.92	3.84	49.44	40903
12	0.66	1.30	1.04	3.00	4.63	20.16	17136
14	0.94	1.31	1.11	3.36	4.64	27.30	25990
18	0.74	0.73	0.00	1.47	3.01	0.66	291

Adapted from: Stocks, B.J. 1987. Fire behavior in immature jack pine. Can. J. For. Res. 17: 80–86.

Assumption:

Values for fire behavior databases are given as though they are a 'magical' constant for a particular fuel type and burning condition rather than an average with statistical ranges associated with it.

Obvious questions:

- 1. How accurate are these averages?
- 2. What is the standard deviation/standard error level of each average?
- 3. What is the absolute range in these values?

The problem

Reason for questions:

1. Suppression activities – Concerns regarding rate of spread/intensity values: is it safe to send fire crews to work on a firefront?

Rate of spread average of 6.5 m/min

5.0 - 8.0 versus 5.0 - 15.0 m/min

The problem

Fire behavior is difficult to quantify in the past because of:

- The lack of adequate sampling due to field expenses and expense of monitoring equipment.
- Equipment failures.
- Reliance on visual observations based on fixed-point measurements.
- Research personnel safety concerns.
- Mother nature never cooperates (e.g., wind lulls and gusts, wind direction changes, etc.).

FIRE BEAR Project (Fire Effects in the Boreal Eurasia Region)

 To better understand fire in central Siberia, the FIRE BEAR Project was created as a forest fire research study to provide answers to basic questions on fire management.

Replicated 200 x 200-m experimental burn plots on Scots pine (*Pinus sylvestris*) / lichen (*Cladonia* sp.) / feather moss (*Pleurozeum schreberi*) forest sites.

Fuel and fire behavior on these fires was quantified.

FIRE BEAR Project (Fire Effects in the Boreal Eurasia Region)

Rate of spread: 5.6 m/min Fireline intensity: 5220 kW/m

lot 1 3:5

Plot 1

Plot 1

4:06:0

Infrared data analysis

Variability in rates of spread can be caused by:

- Differences in fuel structure.
- Differences in soil (ground fuel) moisture.
- Gusts and lulls in wind speed.
- Changes in wind direction.
- Channeling and acceleration effect on wind.
- Junction zone effects.
- Edge effect of experimental plot.
- Impact of tree density on solar radiation and fuel dryness.
- Spotting.
- Analysis problems.

Application to Models

Application to Models

Total fuel consumption

Total fuel consumption

Conclusions

Fire behavior

- Fire behavior is a highly variable phenomena at the microsite level (e.g., 1- m pixel).
- Due to the lack of statistical data in the past, most current models do not indicate the actual ranges of fire behavior.
- Remote sensing using infrared cameras allows for multiple sampling to take place, which allows for adequate sample numbers to allow for statistical analysis.
- For fire crew safety, realize that there is a range of possible values around any average!
- Other applications for infrared monitoring (e.g., fuel consumption, carbon emission).

Fuel consumption

Fuel consumption

Results

 Table 2. Fuel consumption values (plot averages with standard error) observed for each experimental Siberian Scots pine fire

	Consumption (dry weight) by category (kg/m2)						
Fire No.	Vegetation	Dead & Down	Litter	Forest Floor	Total		
1	0.03±0.01	0.28±0.10	0.16±0.03	1.45±0.08	1.80±0.16		
	(0-0.09)	(0.02-3.28)	(0.03-0.55)	(0.03-4.63)	(0.34-5.23)		
2	0.03±0.01	0.18±0.06	0.11±0.02	1.36±0.06	1.68±0.12		
	(0-0.12)	(0.00-2.28)	(0.00-0.28)	(00.0-4.90)	(0.32-4.32)		
3	0.00±0.04	0.04±0.01	0.18±0.04	0.74±0.04	0.93±0.04		
	(0.00-0.12)	(0.00-0.30)	(0.07-0.37)	(0.00-2.00)	(0.49-12.43)		
13	<mark>0.07</mark> ±0.01	0.41±0.17	<mark>0.30±</mark> 0.06	1.50±0.08	2.03±0.22		
	(0.00-0.16)	(0.00-7.43)	(0.02-1.50)	(0.02-5.53)	(0.26-10.47)		
14	<mark>0.07</mark> ±0.01	<mark>0.44</mark> ±0.18	0.25±0.25	<mark>2.45</mark> ±0.12	<mark>3.03</mark> ±0.23		
	(0.00-0.13)	(0.00-7.55)	(0.07-0.51)	(0.09-10.36)	(1.17-9.79)		
20	0.02±0.02	0.30±0.15	0.11±0.01	1.16±0.05	1.50±0.15		
	(0.00-0.13)	(0.01-7.33)	(0.01-0.27)	(0.12-3.65)	(0.53-7.79)		

Values in parentheses show the range in consumption values

Results

Equilibrium (steady-state) fire behavior characteristics (plot averages with standard error) observed for each Siberian experimental Scots pine fire

Fire No.	Depth of burn (cm)	Rate of spread (m/min)	Fireline intensity (kW/m)	Total fire intensity (kJ/m2)
1	5.6 ± 0.20	<mark>7.9</mark> ± 0.04	2259 ± 189	27 662 ± 2316
	(0.5-9.4)	(1.3-17.9)	(207-6800)	(25235-83261)
2	4.4 ± 0.13	4.9 ± 0.35	2259 ± 189	27 662 ± 2316
	(1.1-9.8)	(1.2-9.9)	(207-6800)	(25235-83261)
3	3.3 ± 0.09	2.5 ± 0.25	620 ± 34	14 878 ± 828
	(1.1-5.9)	(1.1-9.4)	(260-1038)	(6230-24920)
13	4.6 ± 0.15	2.0 ± 0.34	1214 ± 149	36 450 ± 4474
	(0.9-10.5)	(0.8-5.7)	(52-6981)	(1564-209443)
14	<mark>6.3</mark> ± 0.15	5.6 ± 0.07	5220 ± 434	<mark>55 938</mark> ± 4646
	(1.2-15.0)	(3.6-14.8)	(805-18372)	(19344-196851)
20	4.2±0.10	6.5±0.05	2790 ± 341	25 757 ± 3145
	(1.7-8.3)	(2.4-16.5)	(718-17049)	(6629-157376)

Values in parentheses show the range in values